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ON THE ANALYSIS OF DYNAMIC BEHAVIOR 
OF HIGH POLYMERS 

Introduction 

Extensive work has  been published concerning the dynamic behavior 
of high polymers. In a paper by Bordoni, Nuovo, and Verdini (1) (BNV), 
which we will discuss  a t  length in the present paper, many references 
can be found. BNV found the characteristic t ime & partial relaxation, 
in polymethyl methacrylate, to be an unphysically small value in the or- 
der of 10- '' sec.; a value even smaller than the highest mechanical vi- 
bration period through a perfect periodic latt ice (2). In this paper, we 
will propose a method to analyze the dynamic behavior. One of the re- 
sul ts  of th i s  method shows that the characteristic time, based on the ex- 
perimental data of t hese  authors, is in fact only ir. &c order oi io-* 
scc. 

Dissipation Function 

In the partial relaxation of the chain motion in high polymers, the tem- 
perature dependence of the energy dissipation shows a broader peak than 
the peak obtained from the single relaxation t h e  theory (3). Various ex- 
pressions have been introduced to describe this broader peak (4), but we 
believe one important feature was not taken into account, that  i s ,  the 
symmetry of the dissipation peak in the 1/T diagram. Elsewhere we have 
discussed the significance of the symmetrical and unsymmetrical disper- 
sion ( 5 ) ,  and a special  dispersion function was proposed (6,7). 

In an appropriate notation, the function becomes, 

where Q- ' is the coefficient of the energy dissipation; S has the mean- 
ing of modulus defect, X = cot- ' enfro with f as the vibration frequency 
and ro a s  the characteristic relaxation t ime ;  f l  is an empirical parameter, 
0 5 p 5 1. The c a s e  f l  = 1 reduces eq. (1) to a single relaxation time 
dispersion function. 

Analysis 

In this section, we will analyze the dissipation data of polymethyl 
methacrylate of BNV. The numerical value discussed is from Figure 10 
of their work. 
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Some useful graphs of eq. (1) have been given in Ref. 6. With appro- 
priate modification, a s  indicated in that reference, additional numerical 
graphs to  facilitate calculations can be  found in the work of Davidson 
(8). Usually the left-half and right-half widths of the dissipation peaks 
are compared. In the present case ,  the  left-dissipation value does not 
reach 0.5. Therefore, we will compare the widths at Q- Q,- ' = 0.8. 
At this  value, w e  find 

(Tm- ' - T- ') = +4.67 on the right 
W 
I; 

= -6.98 on the left 

This  relative left-excess of the absolute value of the widths can be well 
approximated by taking /3 closely to  0.3. However, we cannot obtain the 
absolute value of these widths unless we replace the value of W = 0.273 
of BNV by W' = aW with, of course, a f 1. From p = 0.3, w e  find a = 

0.21 gives a good quantitative fit as  shown in Figure 1. In the s a m e  
figure, we show a curve obtained from the Fuoss-Kirkwood function ( 9 )  
with y = 0.117 a s  given by BNV. This  Fuoss-Kirkwood curve represents 
the global broadening of the dissipation peak well; therefore it is an  im- 

4 

Fig. 1. Temperature dependence of the dissipation coefficient of the 
polymethyl methacrylate specimen l (b)  of Bordoni g & o f  Ref. 1. (0) 
experimental data; (--) Zeners dissipation curve; (- -) Fuoss-Kirkwood 
function with y = 0.117 (from Table IV of Ref. 1); (-) present dissipa- 
tion function. 
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provement of the single relaxation time curve (also shown in Figure l ) ,  
but fails  to  reproduce the unsymmetry aspect. 

t ime.  With W', from the relation of BNV, 

, 

The most drastic effect is on the value of the characteristic relaxation 

Substituting the values of f, = 12.88 x lo3 c./sec. and T, = 110.5OK., 

I r0 = 3.1 x lO-'sec. (4) 

To be exact, neither T~ of eq. (4) nor To of BNV has the significance of 
a "center of the spectrum." This center, which we understood to be 
the most probable distribution, is given by (6) I 

, with B = 0.3, and therefore 

~ This result is obtained in a natural way by invoking a consistent mathe- 

In the case of Fuoss-Kirkwood dispersion, BNV gives the following 
matical analysis. 

~ relation for the modulus 

Our corresponding expression is 

Therefore, a similar interpretation of the temperature dependence of the 
characteristic t ime  and the number of elementary processes is permis- 
sible in the present formalism. 
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